##### ###### ##### ### # # ### # # ###### ## ## ## ## ## ## ## # # # # # ## ##### #### ##### # # # # # # # #### ## # ## ## ## ## # # # # # ## ## # ###### ## ### # ### # ######
##### ###### ##### ### # # ### # # ###### ## ## ## ## ## ## ## # # # # # ## ##### #### ##### # # # # # # # #### ## # ## ## ## ## # # # # # ## ## # ###### ## ### # ### # ######
##### ###### ##### ### # # ### # # ###### ## ## ## ## ## ## ## # # # # # ## ##### #### ##### # # # # # # # #### ## # ## ## ## ## # # # # # ## ## # ###### ## ### # ### # ######
You know recursion. Now see how memoization and tabulation turn exponential solutions into polynomial ones.
Show how memoization reduces execution time by preventing recalculation.
Shows how Fibonacci patterns extend to any recurrence with more terms
The perfect first DP problem - simple state, clear transitions, builds intuition for optimal substructure.
Digit manipulation with greedy DP approach - bridges greedy and DP
Classic digit DP that naturally shows overlapping subproblems
Variable jumps and memoization combine to show how pruning works
Unbounded coins hit the same subproblems repeatedly, making memoization essential
Teaches cost optimization in climbing stairs pattern with choice
Naive recursion times out, but adding one memo layer makes it instant - the DP awakening
Teaches you how to compress O(n) space down to O(1) using just two variables
String branching with memoization shows why top-down DP feels natural